

Deliverable: Smart Contract Audit Report

Predict RAM
Smart Contract Review

Security Report

March 2022

LoveMinian
Rectangle

 Smart Contract Audit

Report Summary

Title

Project Owner

Type

Reviewed by Revision date 26/03/2022

 Approval date 28/03/2022

Nº Pages

Predict RAM Smart Contract Audit

Predict RAM

Private

Kyohei Ito

15

 Smart Contract Audit

The vulnerability severity level information:

Level Description

Critical Critical severity vulnerabilities will have a significant effect on the

security of the DeFi project, and it is strongly recommended to fix the

critical vulnerabilities.

High High severity vulnerabilities will affect the normal operation of the DeFi

project. It is strongly recommended to fix high-risk vulnerabilities.

Medium Medium severity vulnerability will affect the operation of the DeFi

project. It is recommended to fix medium-risk vulnerabilities.

Low Low severity vulnerabilities may affect the operation of the DeFi project

in certain scenarios. It is suggested that the project party should

evaluate and consider whether these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to

reproduce in engineering.

The Full List of Check Items:

Category Check Item

Basic Coding Bugs

Constructor Mismatch

Ownership Takeover

Redundant Fallback Function

Overflows & Underflows

Reentrancy

MONEY-Giving Bug

Blackhole

Unauthorized Self-Destruct

Revert DoS

Unchecked External Call

Gasless Send

Send Instead of Transfer

Costly Loop

(Unsafe) Use of Untrusted Libraries

(Unsafe) Use of Predictable Variables

Transaction Ordering Dependence

Deprecated Uses

Semantic Consistency Checks Semantic Consistency Checks

Business Logics Review

Functionality Checks

 Smart Contract Audit

Advanced DeFi Scrutiny

Authentication Management

Access Control & Authorization

Oracle Security

Digital Asset Escrow

Kill-Switch Mechanism

Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling

Frontend-Contract Integration

Deployment Consistency

Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array

Using Fixed Compiler Version

Making Visibility Level Explicit

Making Type Inference Explicit

Adhering To Function Declaration
Strictly
Following Other Best Practices

Common Weakness Enumeration (CWE) Classifications Used in This Audit:

Category Summary

Configuration Weaknesses in this category are typically introduced during
the configuration of the software.

Data Processing Issues Weaknesses in this category are typically found in
functionality that processes data.

Numeric Errors Weaknesses in this category are related to improper
calculation or conversion of numbers.

Security Features Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper
management of time and state in an environment that
supports simultaneous or near-simultaneous computation by
multiple systems, processes, or threads.

Error Conditions, Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code, or
if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper
management of system resources.

 Smart Contract Audit

Behavioral Issues Weaknesses in this category are related to unexpected
behaviors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex
pilotable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

 Severity No. of Issues

Critical 0

High 0

Medium 0

Low

Total

Smart Contract Audit

Findings

Summary

Here is a summary of the findings after analyzing the Predict RAM Smart

Contract Review. During the first phase of the audit, I studied the smart

contract source code and ran my in-house static code analyzer through the

Specific tool. The purpose here is to statically identify known coding bugs, and

then manually verify (reject or confirm) issues reported by tool. I further

manually review business logics, examine system operations, and place

DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

3

3

We have so far identified that there are potential issues with severity of 0
Critical, 0 High, 0 Medium, and 3 Low. Overall, these smart contracts are

well-designed and engineered.

 Smart Contract Audit

Functional Overview

($) = payable function

 # = non-constant function

[Pub] public

[Ext] external

[Prv] private

[Int] internal

+ [Int] IERCToken (IERC20)

- [Ext] totalSupply

- [Ext] balanceOf

- [Ext] transfer #

- [Ext] allowance

- [Ext] approve #

- [Ext] transferFrom #

- [Ext] mint

- [Ext] burnToken

+ portfolioBuyer (Ownable, porfolioWhitelist)

- [Pub] <Constructor> #

- [Prv] eventToken

- [Pub] designatedSigner

- [Pub] proposalLists

- [Ext] setTokenAddress

- modifiers: onlyOwner

- [Ext] buyPotfolioBuyer $

- [Ext] buyBack

- modifiers: onlyOwner

- [Ext] retrieveBalances

- modifiers: onlyOwner

 Smart Contract Audit

 - [Ext] setDesinatedSigner

 - modifiers: onlyOwner

- [Ext] receive $

+ portfolioFactory (Ownable)

- [Pub] tokensListed

- [Pub] eventList

- [Ext] create_portfolio

 - modifiers: onlyOwner

+ portfolioTokens (ERC20, Ownable)

- [Pub] <Constructor> #

- [Pub] minter

- [Ext] addMinter

- modifiers: onlyOwner

- [Ext] mint

 - [Ext] burnToken

+ portfolioWhitelist (EIP712)

- [Pub] <Constructor> #

- [Prv] SIGNING_DOMAIN

- [Prv] SIGNATURE_VERSION

- [Pub] getSigner

- [Int] _hash

- [Int] _verify

 Smart Contract Audit

Inheritance

Smart Contract Audit

Detailed Results

Issues Checking Status

1. Local Variables Shadowing

• Severity: Low

• Location:

- portfolioFactory.sol#14

 create_portfolio.owner shadows Ownable.owner

 •

 • Description: variable shadowing occurs when a variable declared within a

certain scope (decision block, method, or inner class) has the same name as a

variable declared in an outer scope

Remediations: Rename the local variables that shadow another component.

2. External Calls inside a loop

• Severity: Low

• Location:

- portfolioBuyer.sol#34-36

• Description:Calls inside a loop might lead to a denial-of-service attack. If

one of the destinations has a fallback function that reverts, it will always revert

• Remediations: Favor pull over push strategy for external calls.

see https://eth.wiki/en/howto/smart-contract-safety#favor-pull-over-push-for-external-calls

3. Missing zero address validation

• Severity: Low

• Location:

- portfolioBuyer.sol#44

• Description: If the parameter address is non-available, the signer of the

portfolioBuyer will get lost.

• Remediations: Check that the address is not zero.

https://github.com/AteronOfficial/Token/blob/main/Token

 Smart Contract Audit

Unit Testing Results

LoveMinian
Placed Image

 Smart Contract Audit

Basic Coding Bugs

No. Name Description Severity Result

1. Constructor

Mismatch

Whether the contract name

and its constructor are not

identical to each other.

Critical PASSED

2. Ownership

Takeover

Whether the set owner

function is not protected.

Critical PASSED

3. Redundant

Fallback

Function

Whether the contract has a

redundant fallback

function.

Critical PASSED

4. Overflows &

Underflows

Whether the contract has

general overflow or

underflow vulnerabilities

Critical PASSED

5. Reentrancy

Reentrancy is an issue

when code can call back

into your contract and

change state, such as

withdrawing ETHs

Critical PASSED

6. MONEY-Giving

Bug

Whether the contract

returns funds to an

arbitrary address

High PASSED

7. Blackhole

Whether the contract locks

ETH indefinitely: merely in

without out

High PASSED

8. Unauthorized

Self-Destruct

Whether the contract can

be killed by any arbitrary

address

Medium PASSED

 Smart Contract Audit

9. Revert DoS

Whether the contract is

vulnerable to DoS attack

because of unexpected

revert

Medium

PASSED

10. Unchecked

External Call

Whether the contract has

any external call without

checking the return value

Medium PASSED

11. Gasless Send Whether the contract is

vulnerable to gasless send

Medium PASSED

12. Send Instead of

Transfer

Whether the contract uses

send instead of transfer

Medium PASSED

13. Costly Loop

Whether the contract has

any costly loop which may

lead to Out-Of-Gas

exception

Medium PASSED

14. (Unsafe) Use of

Untrusted

Libraries

Whether the contract use

any suspicious libraries

Medium PASSED

15. (Unsafe) Use of

Predictable

Variables

Whether the contract

contains any randomness

variable, but its value can

be predicated

Medium PASSED

16. Transaction

Ordering

Dependence

Whether the final state of

the contract depends on the

order of the transactions

Medium PASSED

 Smart Contract Audit

17. Deprecated Uses

Whether the contract use

the deprecated tx.origin to

perform the authorization

Medium PASSED

18. Semantic

Consistency

Checks

Whether the semantic of

the white paper is different

from the implementation of

the contract

Critical PASSED

Smart Contract Audit

Conclusion

In this audit, I thoroughly analyzed Predict RAM’s Smart Contract. The current

code base is well organized but there are promptly some low-level issues found

in this phase of Smart Contract Audit.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an

early, but exciting stage of development. To improve this report, we greatly

appreciate any constructive feedbacks or suggestions, on our methodology, audit

findings, or potential gaps in scope/coverage.

